54 research outputs found

    A Combined Representation Learning Approach for Better Job and Skill Recommendation

    Get PDF
    Job recommendation is an important task for the modern recruitment industry. An excellent job recommender system not only enables to recommend a higher paying job which is maximally aligned with the skill-set of the current job, but also suggests to acquire few additional skills which are required to assume the new position. In this work, we created three types of information net- works from the historical job data: (i) job transition network, (ii) job-skill network, and (iii) skill co-occurrence network. We provide a representation learning model which can utilize the information from all three networks to jointly learn the representation of the jobs and skills in the shared k-dimensional latent space. In our experiments, we show that by jointly learning the representation for the jobs and skills, our model provides better recommendation for both jobs and skills. Additionally, we also show some case studies which validate our claims

    A device-level characterization approach to quantify the impacts of different random variation sources in FinFET technology

    Get PDF
    A simple device-level characterization approach to quantitatively evaluate the impacts of different random variation sources in FinFETs is proposed. The impacts of random dopant fluctuation are negligible for FinFETs with lightly doped channel, leaving metal gate granularity and line-edge roughness as the two major random variation sources. The variations of Vth induced by these two major categories are theoretically decomposed based on the distinction in physical mechanisms and their influences on different electrical characteristics. The effectiveness of the proposed method is confirmed through both TCAD simulations and experimental results. This letter can provide helpful guidelines for variation-aware technology development

    Investigation on the amplitude of random telegraph noise (RTN) in nanoscale MOSFETs: Scaling limit of “Hole in the inversion layer” model

    Get PDF
    In this paper, the widely adopted “hole in the inversion layer” (HIL) model for predicting the amplitude of random telegraph noise (RTN) in nanoscale MOSFETs, is theoretically revisited with focusing on its scaling limit and validation range. It is found that this simple physical model fail to apply on ultra-scaled devices with L<;20nm and/or W<;10nm, due to the non-negligible impact from source/drain and the failure of assumed equivalence to resistor network in ultra-scaled devices. This work provides a deeper understanding to this model and is helpful for accurate prediction of RTN amplitude in nanoscale devices and circuits

    An Analysis Framework for Content-based Job Recommendation

    No full text
    22nd International Conference on Case-Based Reasoning (ICCBR), Cork, Ireland, 29 September - 01 October 2014In this paper, we focus on the task of job recommendation. In particular, we consider several personalised content-based and case-based approaches to recommendation. We investigate a number of feature-based item representations, along with a variety of feature weighting schemes. A comparative evaluation of the various approaches is performed using a realworld, open source dataset.Science Foundation IrelandInsight Research Centr

    Die Bonding of High Power 808 nm Laser Diodes With Nanosilver Paste

    No full text
    Conduction-cooled high power laser diodes have a variety of significant commercial, industrial, and military applications. For these devices to perform effectively, an appropriate die-attached material meeting specific requirements must be selected. In this study, nanosilver paste, a novel die-attached material, was used in packaging the 60 W 808 nm high power laser diodes. The properties of the laserdiodes operating in the continuous wave (CW) mode, including the characteristics of power-current-voltage (LIV), spectrum, near field, far field, near field linearity, spatial spectrum, and thermal impedance, were determined. In addition, destructive tests, including the die shear test, scanning acoustic microscopy, and the thermal rollover test, were conducted to evaluate the reliability of the die bonding ofthe 60 W 808 nm high power semiconductor laser with nanosilver paste. Thermal analyses of the laserdiodes operating at CW mode with different die-attached materials, indium solder, gold-tin solder andnanosilver paste, were conducted by finite element analysis (FEA). According to the result of the FEA, thenanosilver paste resulted in the lowest temperature in the laser diodes. The test results showed that thenanosilver paste was a very promising die-attached material in packaging high power semiconductorlaser

    Role of Gemcitabine and Pemetrexed as Maintenance Therapy in Advanced NSCLC: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.

    No full text
    BACKGROUND:Gemcitabine and pemetrexed have been used as maintenance therapy. However, few systematic reviews and meta-analyses have assessed their effects in the newest studies. This systematic review and meta-analysis were conducted to assess the role of gemcitabine and pemetrexed in the maintenance treatment of non-small-cell lung carcinoma (NSCLC). METHODS:We performed a literature search using PubMed, EMBASE and Cochrane library databases from their inceptions to September 16, 2015. We also searched the American Society of Clinical Oncology (ASCO), European Society for Medical Oncology (ESMO), and National Comprehensive Cancer Network (NCCN) databases from 2008 to 2015. Two authors independently extracted the data. The Cochrane Collaboration's risk of bias graph was used to assess the risk of bias. The GRADE system was used to assess the grading of evidence, and a meta-analysis was conducted using Stata 11.0 software. RESULTS:Eleven randomized controlled trial (RCT) studies were collected. Ten studies were included in the meta-analysis and divided into the following 4 groups: gemcitabine vs. best supportive care (BSC)/observation, pemetrexed vs. BSC/placebo, pemetrexed + bevacizumab vs. bevacizumab and pemetrexed vs. bevacizumab. Gemcitabine exhibited significantly improved progression-free survival (PFS) compared with BSC (hazard ratio (HR) = 0.62, p = 0.000). Pemetrexed exhibited significantly improved PFS (HR = 0.54, p = 0.000) and OS (HR = 0.75, p = 0.000) compared with BSC. Pemetrexed + bevacizumab almost exhibited significantly improved PFS (HR = 0.71, p = 0.051) compared with bevacizumab. Pemetrexed exhibited no improvement in PFS or overall survival (OS) compared with bevacizumab. Regarding the grade, the GRADE system indicated that the gemcitabine group was "MODERATE", the pemetrexed group was "HIGH", and both the pemetrexed + bevacizumab vs. bevacizumab groups and pemetrexed vs. B groups were "LOW". CONCLUSIONS:Gemcitabine or pemetrexed compared with BSC/observation/placebo significantly improved PFS or OS. Whether pemetrexed + bevacizumab compared with bevacizumab alone significantly improves PFS requires further investigation

    Biofilm Formation and Heat Stress Induce Pyomelanin Production in Deep-Sea Pseudoalteromonas sp. SM9913

    No full text
    Pseudoalteromonas is an important bacterial genus present in various marine habitats. Many strains of this genus are found to be surface colonizers on marine eukaryotes and produce a wide range of pigments. However, the exact physiological role and mechanism of pigmentation were less studied. Pseudoalteromonas sp. SM9913 (SM9913), an non-pigmented strain isolated from the deep-sea sediment, formed attached biofilm at the solid–liquid interface and pellicles at the liquid–air interface at a wide range of temperatures. Lower temperatures and lower nutrient levels promoted the formation of attached biofilm, while higher nutrient levels promoted pellicle formation of SM9913. Notably, after prolonged incubation at higher temperatures growing planktonically or at the later stage of the biofilm formation, we found that SM9913 released a brownish pigment. By comparing the protein profile at different temperatures followed by qRT-PCR, we found that the production of pigment at higher temperatures was due to the induction of melA gene which is responsible for the synthesis of homogentisic acid (HGA). The auto-oxidation of HGA can lead to the formation of pyomelanin, which has been shown in other bacteria. Fourier Transform Infrared Spectrometer analysis confirmed that the pigment produced in SM9913 was pyomelanin-like compound. Furthermore, we demonstrated that, during heat stress and during biofilm formation, the induction level of melA gene was significantly higher than that of the hmgA gene which is responsible for the degradation of HGA in the L-tyrosine catabolism pathway. Collectively, our results suggest that the production of pyomelanin of SM9913 at elevated temperatures or during biofilm formation might be one of the adaptive responses of marine bacteria to environmental cues
    corecore